Identification of a Major QTL That Alters Flowering Time at Elevated [CO2] in Arabidopsis thaliana

نویسندگان

  • Joy K. Ward
  • Debosree Samanta Roy
  • Iera Chatterjee
  • Courtney R. Bone
  • Clint J. Springer
  • John K. Kelly
چکیده

BACKGROUND The transition from vegetative to reproductive stages marks a major milestone in plant development. It is clear that global change factors (e.g., increasing [CO(2)] and temperature) have already had and will continue to have a large impact on plant flowering times in the future. Increasing atmospheric [CO(2)] has recently been shown to affect flowering time, and may produce even greater responses than increasing temperature. Much is known about the genes influencing flowering time, although their relevance to changing [CO(2)] is not well understood. Thus, we present the first study to identify QTL (Quantitative Trait Loci) that affect flowering time at elevated [CO(2)] in Arabidopsis thaliana. METHODOLOGY/PRINCIPAL FINDINGS We developed our mapping population by crossing a genotype previously selected for high fitness at elevated [CO(2)] (SG, Selection Genotype) to a Cape Verde genotype (Cvi-0). SG exhibits delayed flowering at elevated [CO(2)], whereas Cvi-0 is non-responsive to elevated [CO(2)] for flowering time. We mapped one major QTL to the upper portion of chromosome 1 that explains 1/3 of the difference in flowering time between current and elevated [CO(2)] between the SG and Cvi-0 parents. This QTL also alters the stage at which flowering occurs, as determined from higher rosette leaf number at flowering in RILs (Recombinant Inbred Lines) harboring the SG allele. A follow-up study using Arabidopsis mutants for flowering time genes within the significant QTL suggests MOTHER OF FT AND TFL1 (MFT) as a potential candidate gene for altered flowering time at elevated [CO(2)]. CONCLUSION/SIGNIFICANCE This work sheds light on the underlying genetic architecture that controls flowering time at elevated [CO(2)]. Prior to this work, very little to nothing was known about these mechanisms at the genomic level. Such a broader understanding will be key for better predicting shifts in plant phenology and for developing successful crops for future environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.

The genetic basis of phenotypic traits is of great interest to evolutionary biologists, but their contribution to adaptation in nature is often unknown. To determine the genetic architecture of flowering time in ecologically relevant conditions, we used a recombinant inbred line population created from two locally adapted populations of Arabidopsis thaliana from Sweden and Italy. Using these RI...

متن کامل

Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature

Flowering time is a key life-history trait in the plant life cycle. Most studies to unravel the genetics of flowering time in Arabidopsis thaliana have been performed under greenhouse conditions. Here, we describe a study about the genetics of flowering time that differs from previous studies in two important ways: first, we measure flowering time in a more complex and ecologically realistic en...

متن کامل

A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis th...

متن کامل

Natural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics.

Besides being a metabolic fuel, carbohydrates play important roles in plant growth and development, in stress responses, and as signal molecules. We exploited natural variation in Arabidopsis (Arabidopsis thaliana) to decipher the genetic architecture determining carbohydrate content. A quantitative trait locus (QTL) approach in the Bay-0 x Shahdara progeny grown in two contrasting nitrogen env...

متن کامل

Genetics of Local Adaptation in the Laboratory: Flowering Time Quantitative Trait Loci under Geographic and Seasonal Conditions in Arabidopsis

Flowering time in Arabidopsis thaliana is controlled by a large number of genes and various environmental factors, such as light and temperature. The objective of this study was to identify flowering time quantitative trait loci (QTL) under growth conditions simulating seasonal conditions from native geographic locations. Our growth chambers were set to simulate the spring conditions in Spain a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012